
Comparing the Performance of Julia on CPUs versus GPUs and
Julia-MPI versus Fortran-MPI: a case study with MPAS-Ocean
(Version 7.1)
Robert R. Strauss1, Siddhartha Bishnu2, and Mark R. Petersen2

1Center for Nonlinear Studies, Los Alamos National Laboratory, NM, 87545, USA
2Computational Physics and Methods Group, Los Alamos National Laboratory, NM, 87545, USA

Correspondence: Mark R. Petersen (mpetersen@lanl.gov)

Abstract. Some programming languages are easy to develop at the cost of slow execution, while others are fast at run time

but much more difficult to write. Julia is a programming language that aims to be the best of both worlds—a development

and production language at the same time. To test Julia’s utility in scientific high-performance computing (HPC), we built an

unstructured-mesh shallow water model in Julia and compared it against an established Fortran-MPI ocean model, MPAS-Ocean,

as well as a Python shallow water code. Three versions of the Julia shallow water code were created, for: single-core CPU;5

graphics processing unit (GPU); and Message Passing Interface (MPI) CPU clusters. Comparing identical simulations revealed

that our first version of the Julia model was 13 times faster than Python using Numpy, where both used an unthreaded

single-core CPU. Further Julia optimizations, including static typing and removing implicit memory allocations, provided

an additional 10–20x speed-up of the single-core CPU Julia model. The GPU-accelerated Julia code is attained a speed-up

of 230-380x compared to the single-core CPU Julia code. Parallelized Julia-MPI performance was identical to Fortran-MPI10

MPAS-Ocean for low processor counts, and ranges from 2x faster to 2x slower for higher processor counts. Our experience

is that Julia development is fast and convenient for prototyping, but that Julia requires further investment and expertise to be

competitive with compiled codes. We provide advice on Julia code optimization for HPC systems.

1 Introduction

A major concern in computer modeling is the trade-off between execution speed and code development time. In general,15

programs in scripting languages like Python and Matlab are faster to develop due to their simpler syntax and more relaxed

typing requirements, but are limited by slower execution time. On the other end of the spectrum, we have compiled languages

like C/C++ and Fortran, which have been extensively used in scientific computing for many decades. Programs in such

languages are blessed with faster execution time, but are cursed with stricter and more cumbersome syntax, leading to slower

development time. The Julia language strikes a balance between these two categories (Perkel, 2019). It is a compiled language20

with execution speed similar to C/C++ or Fortran, if carefully written with strict syntax (Lin and McIntosh-Smith, 2021;

Gevorkyan et al., 2019). It is also equipped with a more convenient syntax and features, such as dynamic typing, to accelerate

code development in prototyping. To this day, the majority of scientific computing models are programmed in compiled

1

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

languages, which execute fast but can take can take years to develop—for example, the first version of MPAS-Ocean required

three years (Ringler et al., 2013). In this paper, we investigate the feasibility of writing Julia codes for computational physics25

simulations, since a Julia program can not only ensure high performance but also less development time in the initial stages.

We develop a shallow water solver in Julia and compare its performance to an equivalent Fortran code.

An additional complication in choosing the best language is that layers of libraries have been added to C/C++ and Fortran

to accommodate evolving computer architectures. For the past 25 years, computational physics codes have largely used the

Message Passing Interface (MPI) to communicate between CPUs on separate nodes that do not share memory, and OpenMP30

to parallelize within a node using shared-memory threads. With the advent of heterogeneous nodes containing both CPUs and

GPUs, scientific programmers have several new choices: writing kernels directly for GPUs in CUDA (Bleichrodt et al., 2012;

Zhao et al., 2017; Xu et al., 2015); adding OpenACC pragmas for the GPUs (Jiang et al., 2019); or calling libraries such as

Kokkos (Trott et al., 2022) that execute code optimized for specialized architectures on the back-end, while providing a simpler

front-end interface for the domain scientist. All of these require additional expertise, and add to the length and complexity of35

the code base. Julia also provides an MPI library for parallelization across nodes in a cluster, and a CUDA library to parallelize

over GPUs within a node. We have written shallow water codes in Julia that adopt each of these parallelization strategies.

In recent years, shallow water solvers such as Oceananigans.jl (Ramadhan et al., 2020) and ShallowWaters.jl (Klöwer

et al., 2022) have been developed in Julia. These codes employ structured rectilinear meshes to discretize their domain,

and are equipped with capabilities for running on GPUs to achieve high performance. Here we conduct a comparison on40

unstructured-mesh models, using the Fortran code MPAS-Ocean (Ringler et al., 2013) as a point of reference. MPAS-Ocean

employs unstructured near-hexagonal meshes with variable resolution capability and is parallelized with MPI for running on

supercomputer clusters. We developed a Julia model employing the same spatial discretization of MPAS-Ocean, and capable of

running in serial mode on a single core, or in parallel mode on a supercomputer cluster or a graphics card. We discuss the subtle

details of our implementations, compare the speed-ups attained, and describe the strategies employed to enhance performance.45

2 Methods

2.1 Equation Set & TRiSK-Based Spatial Discretization

Our Julia model solves the shallow water equations (Cushman-Roisin and Beckers, 2011) in vector-invariant form. This is

sufficiently close to the governing equations for ocean and atmospheric models to be used as a proxy to test performance with

new codes and architectures. The equation set is50

ut + qhu⊥ =−g∇η−∇K, (1a)

ηt +∇ · (hu) = 0, (1b)

where u is the horizontal velocity vector, u⊥ = k×u, h is the layer thickness, η is the surface elevation or sea surface height

(SSH), K = |u|2/2 is the kinetic energy, and g is the acceleration due to gravity. If b represents the topographic height and H

the mean depth, then η = h+b−H . Moreover, if f denotes the Coriolis parameter, and ζ = k ·∇×u the relative vorticity, then55

2

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

the absolute vorticity, ωa = ζ + f , and the potential vorticity, q = ωa/h. The term qhu⊥ is the thickness flux of the PV in the

direction perpendicular to the velocity, rotated counterclockwise on the horizontal plane. Ringler et al. (2010) refer to it as the

non-linear Coriolis force since it consists of the quasi-linear Coriolis force fu⊥ and the rotational part ζu⊥ of the non-linear

advection term u·∇u. We spatially discretize the prognostic equations in (1) using a mimetic finite volume method based on the

TRiSK scheme, which was first proposed by (Thuburn et al., 2009), and then generalized by (Ringler et al., 2010). This method60

was chosen to horizontally discretize the primitive equations of MPAS-Ocean while invoking the hydrostatic, incompressible,

and Boussinesq approximations on a staggered C-grid. Since this horizontal discretization guarantees conservation of mass,

potential vorticity, and energy, it makes MPAS-Ocean a suitable candidate to simulate mesoscale eddies.

Our spatial domain is tessellated by two meshes, a regular planar hexagonal primal mesh and a regular triangular dual mesh.

Each corner of the primal mesh cell coincides with a vertex of the dual mesh cell and vice versa. A line segment connecting65

two primal mesh cell centers is the perpendicular bisector of a line segment connecting two dual mesh cell centers and vice

versa. Regarding our prognostic variables, the scalar SSH η is defined at the primal cell centers, and the normal velocity vector

ue is defined at the primal cell edges. The divergence of a two-dimensional vector quantity is defined at the positions of η,

while the two-dimensional gradient of a scalar quantity is defined at the positions of ue and oriented along its direction. The

curl of a vector quantity is defined at the vertices of the primal cells. Finally, the tangential velocity u⊥e along a primal cell70

edge is computed diagnostically using a flux mapping operator from the primal to the dual mesh, which essentially takes a

weighted average of the normal velocities on the edges of the cells sharing that edge. Interested readers may refer to Thuburn

et al. (2009) and Ringler et al. (2010) for further details on the mesh specifications.

At each edge location xe, two unit vectors ne and te are defined parallel to the line connecting the primal mesh cells, and in

the perpendicular direction rotated counterclockwise on the horizontal plane, such that te = k×ne. The discrete equivalent of75

the set of equations (1) is

(ue)t = F⊥e q̂e−
[
∇(gη)i +Ki

]
e
, (2a)

(ηi)t =− [∇ ·Fe]i , (2b)

where Fe = ĥeue and F⊥e represent the thickness fluxes per unit length in the ne and te directions respectively. The layer

thickness hi, the SSH ηi, the topographic height bi, and the kinetic energy Ki are defined at the centers xi of the primary mesh80

cells, while the velocity ue are defined at the edge points xe. The symbol (̂.)e represents an averaging of a field from its native

location to xe. The discrete momentum equation (2b) is obtained by taking the dot product of (1b) with ne, which modifies

the non-linear Coriolis term to

ne · q̂eĥeu
⊥ = q̂eĥene · (k×u) = q̂eĥeu · (ne×k)

=−q̂eĥeu · te =−q̂eĥeu
⊥
e =−F⊥e q̂e. (3)85

Given the numerical solution at time level tn = n∆t, with ∆t representing the time step and n ∈ Z≥0, the Julia model first

computes the time derivative or tendency terms of (2) as functions of the discrete spatial and flux-mapping operators of the

3

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

TRiSK scheme. Then it advances the numerical solution to time level tn+1 using the forward-backward method

un+1 = un + ∆tF (un,hn) , (4)

hn+1 = hn + ∆tG
(
un+1,hn

)
, (5)90

where F and G represent the discrete tendencies of the normal velocity and the layer thickness in functional form, and the

subscripts representing the positions of these variables have been dropped for notational simplicity.

The following sections introduce the new codes that were created for this study. Three versions of the Julia code were

written (Strauss, 2023): the base single-core CPU version, an altered version for GPUs with CUDA, and a multi-node CPU

implementation with Julia-MPI. These were compared against existing Fortran-MPI and single-core Python versions of shallow-water95

TRiSK models. All use a standard MPAS unstructured-mesh file format that specifies the geometry and topology of the mesh,

and includes index variables that relate neighboring cells, edges, and vertices. All models have an inner (fastest-moving) index

for the vertical coordinate and were tested with 100 vertical layers to mimic performance in a realistic ocean model.

2.2 Single-Core CPU Julia Implementation

The serial-mode implementation on a single core involves looping over every cell and edge of the mesh to (a) compute the100

tendencies, i.e. the right-hand side terms of the prognostic equations (2) and (b) advance their values to the next time step. The

tendencies can be functions of the dependent and independent variables as well as spatial derivatives of the dependent variable.

The serial version of our model is the simplest one from the perspective of transforming the numerical algorithms into code.

In order to highlight differences in formulation, we provide a Julia code example for the single tendency term from (2) for

the SSH gradient −g∇η, which is discretized as − [g∇ηi]e. We then add a vertical index k to mimic the performance of a105

multi-layer ocean model, but each layer is trivially redundant. In a full ocean model this term would be the pressure gradient,

and would involve the computation of pressure as a function of depth and density. For the single-core CPU version, the Julia

function computing the SSH gradient is

Listing 1. Julia example for serial CPU

1: velocity_tendencies!(sshGradient, ssh, ...)

2:110

3: function velocity_tendencies!(sshGradient, ssh, ...)

4: for iEdge in 1:nEdges

5: cell1 = cellsOnEdge[1,iEdge]

6: cell2 = cellsOnEdge[2,iEdge]

7: for k in 1:nVertLevels115

8: sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]

9: * (ssh[k,cell2] - ssh[k,cell1])

10: end

11: end

4

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

12: end120

Here cellsOnEdge is an array of index variables describing the mesh that points to the cells neighboring an edge, and

dcEdge represents the distance between the centers of adjacent cells sharing the edge on which the normal velocity tendency

is computed. In the actual code all the tendency terms are computed within this function, but here we only show the ssh gradient

as a brief sample.

2.3 SIMD GPU Julia Implementation125

GPUs are very powerful tools for SIMD (Same Instruction Multiple Data) computations: they have thousands of independent

threads, which can execute the same operation at the same time with different input values. Since we numerically solve the

same prognostic equation for (a) the SSH at every cell center xi, and (b) the normal velocity at every edge xe of the mesh, a

GPU is a logical tool to employ for our computations. By placing subsets of cells and edges on different threads of the GPU,

we can perform the tendency computations, and advance the prognostic variables at once in parallel rather than looping over130

every cell and edge, which would scale in wall-clock time according to the size of the mesh.

We wrote CUDA kernels for an Nvidia GPU using the CUDA.jl library for computing the tendencies and advancing the

prognostic variables to the next time step. The code for the single-core implementation can be converted to CUDA with

surprising ease by removing the for loop over the cells and edges, and instead performing the underlying computation on a

single cell or edge:135

Listing 2. Julia example for GPU with CUDA

1: CUDA.@cuda blocks=cld(nEdges, 1024) threads=1024 maxregs=64

2: velocity_tendencies_cuda!(sshGradient, ssh, ...)

3:

4: function velocity_tendencies_cuda!(sshGradient, ssh, ...)

5: iEdge = (CUDA.blockIdx().x - 1) * CUDA.blockDim().x140

6: + CUDA.threadIdx().x

7: cell1 = cellsOnEdge[1,iEdge]

8: cell2 = cellsOnEdge[2,iEdge]

9: for k in 1:nVertLevels

10: sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]145

11: * (ssh[k,cell2] - ssh[k,cell1])

12: end

13: end

Each cell and edge of the mesh will be designated to a different thread on the GPU. The computation for a single cell or edge

will run on a single thread, and a CUDA method will be used to map the index of the thread to the index of the cell (i) or edge150

(e), at which the prognostic variable is being updated. To execute this method over all threads on the GPU, we use a CUDA

5

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

macro to call our kernel and designate the number of threads to use, which should be equal to the number of cells or edges in

the mesh. Note that the inner computation of pressureGradient is identical for the CPU and CUDA kernal codes.

2.4 CPU/MPI Julia Implementation

Rather than iterating through every cell or edge of the mesh, we may parallelize the simulation with multiple processors by155

assigning to each processor a portion of the mesh, a process called domain decomposition. However, the computations of some

spatial operators may require information from the outermost cells of the adjacent processors. So, we need the neighboring

processors to communicate these pieces of information with each other. To ensure an efficient communication, we include

an extra ring or “halo” of cells around the boundary of the region assigned to each processor, which overlaps with the

region assigned to adjacent processors. We do not compute the tendencies of the prognostic variables in the halo region of160

a processor. In fact, we cannot perform this operation without information in an additional ring of halo cells, which is not

assigned to the processor under consideration. So, we obtain the updated values of the prognostic variables in the halo region

by communication with adjacent processors, which contain these halo cells in their interior, and update the prognostic variables

in them.

A number of crucial modifications are necessary to implement this parallelization scheme. For instance, the simulation165

methods are amended so that each process (rank) only performs computations for the set of cells or edges assigned to it. We

use the MPI communication channel (comm) to receive the updated values of the prognostic variables in the halo region of

a processor from adjacent processors which advance these variables. Similarly, we send the updated values of the prognostic

variables along the outermost region of the above-mentioned processor to adjacent processors, for which these variables belong

in the halo regions. For the TRiSK-based spatial discretization and the forward-backward time-stepping method, the halo region170

consists of only one layer (one halo ring) of cells.

Listing 3. Julia example for CPU with MPI

1: # each process executes the following, receiving a different value

2: # on each rank:

3: comm = MPI.COMM_WORLD

4: rank = MPI.Comm_rank(comm)175

5:

6: myCells = cells_for_rank(mesh_file, rank, partition_file)

7: myEdges, myHaloEdges = edges_on_cells(myCells)

8:

9: velocity_tendencies!(myEdges, sshGradient, ssh, ...)180

10: update_halo_edges!(sshGradient, myHalodEdges, rank, comm)

11:

12: function velocity_tendencies!(myEdges, sshGradient, ssh, ...)

13: for iEdge in myEdges

6

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

14: cell1 = cellsOnEdge[1,iEdge]185

15: cell2 = cellsOnEdge[2,iEdge]

16: for k in 1:nVertLevels

17: sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]

18: * (ssh[k,cell2] - ssh[k,cell1])

19: end190

20: end

21: end

22:

23: function update_halo_edges!(data, edgesInMyHalo, rank, comm)

24: for neighborRank in find_neighbors(rank, comm)195

25: MPI.Irecv!(data[edgesInMyHalo,:], neighborRank, 0, comm)

26: edgesToNeighbor = find_halo_overlap(rank, neighbor, comm)

27: MPI.Isend(data[edgesToNeighbor,:], neighborRank, 0, comm)

28: end

29: end200

Here myCells and myEdges are the lists of cells and edges in the local domain, owned by the rank running this code,

plus its halo.

2.5 CPU/MPI Fortran Implementation

j The baseline comparison code for this study is the Model for Prediction Across Scales (MPAS-Ocean) (Ringler et al., 2013;

Petersen et al., 2015), which is written in Fortran with MPI communication commands. It is the ocean component of the205

Energy Exascale Earth System Model (E3SM) (Golaz et al., 2019; Petersen et al., 2019), the climate model developed by

the US Department of Energy. In this study, the code is reduced from a full ocean model solving the primitive equations to

simply solving for velocity and thickness (1). Thus the majority of the code is disabled, including the tracer equation, vertical

advection and diffusion, the equation of state, and all parameterizations. In order to match the Julia simulations, we employ a

forward-backward time-stepping scheme, exchange one-cell-wide halos after each time step, compute 100 layers in the vertical210

array dimension, and use the identical Cartesian hexagon-mesh domains (Petersen et al., 2022).

MPAS-Ocean is an excellent comparison case for Julia because it is a well-developed code base that uses Fortran and MPI,

which have been standard for computational physics codes since the late 1990s. The highest resolution simulations in past

studies used over three million horizontal mesh cells and 80 vertical layers, scale well to tens of thousands of processors

(Ringler et al., 2013) and have been used for detailed climate simulations (Caldwell et al., 2019). MPAS-Ocean includes215

OpenMP for within-node memory access, and is currently adding OpenACC for GPU computations, but these were not used

for this comparison to Julia-MPI on a CPU cluster.

7

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

2.6 Single-Core CPU Python Implementation

In addition to MPAS-Ocean, we compare the performance of the Julia shallow water code against an object-oriented single-core

Python code (Bishnu, 2022), which uses Numpy. The Python code solves the rotating shallow water system of equations220

using two types of spatial discretizations: the TRiSK-based mimetic finite volume method used in MPAS-Ocean, and a

discontinuous Galerkin Spectral Element Method (DGSEM). The code offers a number of standard predictor-corrector and

multistep time-stepping methods, including those analyzed for ocean modeling in Shchepetkin and McWilliams (2005).

The Julia shallow water code was first written by translating this Python code into Julia syntax. While the Julia code was

expanded for parallelization and performance, the Python code was further developed to serve as a platform for conducting225

a verification suite of shallow water test cases for the barotropic solver of ocean models. Each of these test cases in the

Python code verifies the implementation of a subset of terms in the prognostic momentum and continuity equations, e.g. the

linear pressure gradient term, the linear constant or variable-coefficient Coriolis and bathymetry terms, and the non-linear

advection terms. Bishnu et al. (2022) and Bishnu (2021) provide detailed discussions on these test cases along with specifics

of the numerical implementation, the time evolution of the numerical error for both spatial discretizations and a subset of the230

time-stepping methods, and results of convergence studies with refinement in both space and time, only in space, and only in

time. Out of all of these test cases, only the linear coastal Kelvin wave and inertia-gravity wave test cases were implemented

in the Julia code for the current study.

While not used in this study, a number of libraries exist to accelerate Python for various architectures. These include Numba

and PyCuda for GPUs, mpi4py for CPU clusters, and Cython for single-CPU acceleration. Numba (Lam et al., 2015) is an235

open-sourced Anaconda-sponsored NumPy-aware optimizing compiler, which translates Python functions to fast machine

code at runtime using the remarkable industry-standard LLVM compiler library. PyCUDA (Klöckner et al., 2012), written in

C++ (the base layer) and Python, provides access to Nvidia’s CUDA parallel computation API from Python. Mpi4py (Dalcín

et al., 2005, 2008), provides Python bindings for the Message Passing Interface (MPI) standard. As an alternative, one can

‘cythonize’ an existing Python code by providing static type declarations and class attributes, that can then be translated240

to C++/C code and to C-Extensions for Python. Cython is an optimising static compiler for both the Python programming

language and the extended Cython programming language. It is designed to offer C-like performance with code mostly written

in Python with additional C-inspired syntax. The rotating shallow water Python code Bishnu (2022) is currently undergoing

cythonization. Cythonized codes can further be accelerated on GPUs using Nvidia’s HPC C++ compiler, and the C++ Standard

Parallelism (stdpar) for GPUs (Srinath). However, the extent of additional modifications and enhancements required to bring245

GPU-accelerated C++ algorithms to the Python ecosystem may not always be a reasonable investment of time. As we will

see in later sections, a serial Julia code, which already achieves the performance of a fast compiled language, does not

require extensive modifications to be parallelized on GPUs or multiple cores, and is therefore more convenient than python for

high-performance scientific computing applications.

8

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

3 Results250

3.1 Model Verification

Each serial and parallel implementation of the shallow water model described in the previous section was verified for accuracy

with convergence tests against exact solutions. We obtained the expected second-order convergence of the various TRiSK-based

spatial operators on a uniform planar hexagonal MPAS-Ocean mesh. The operators included the gradient, the divergence, the

curl, and the flux-mapping operator used to interpolate the tangential velocities from the normal velocities (Figure 1). The255

formulation of these operators is shown in Figure 3 of Ringler et al. (2010). Once the operator tests were complete, the

linearized shallow water equations were verified against exact solutions for the coastal Kelvin wave and inertia-gravity wave

cases, as described in Bishnu et al. (2022) and Bishnu (2021). With refinement in both space and time, we observe the expected

first-order convergence of the numerical solution (Figure 1), spatially discretized with the second-order TRiSK scheme, and

advanced with the first-order forward-backward time-stepping method (Bishnu, 2021).260

3.2 Acceleration of Julia with GPU Hardware

The Julia serial CPU version of the shallow water model was compared against the Julia CUDA library GPU version and

the reference Python CPU code (Table 1 and Figure 2). Tests were conducted on the Darwin cluster at Los Alamos National

Laboratory, using a single node equipped with Intel Cascade Lake CPUs (Gold 6248 with a clock rate of 2.5 GHz and 27.5M

Cache) and the Nvidia Quadro RTX 8000 “Turing” GPU architecture (4608 CUDA cores, 16.3 TFLOPS peak single precision265

performance, 48 GB GPU memory, and GPU memory bandwidth of 672 GB/s). All performance tests described in this and the

following sections used the coastal Kelvin wave test case on a planar hexagon mesh with the linear shallow water equations and

100 vertical layers. Samples are averaged over ten trials. All codes use double-precision (8 byte) real numbers, and performance

tests do not include the time for initialization, input/output, or generating plots.

In our first version of the Julia single-core CPU code, we did not take any special steps for code optimization, and it was270

already 13 times faster than Python. Julia and Python both have dynamic typing, but Julia has the ability to go much faster

since it also supports concrete typing. Julia is compiled, but hides it cleverly by compiling on the fly based on what datatypes

are provided at run time. It supports a hierarchical abstract typing system, allowing for semi-specified types, such as “Any”,

which all types extend and is the default if no type is specified (thus acting like python), or “AbstractArray”, which can be

occupied at run time with any Array-like data.275

After the initial Julia development, further effort was put into optimization, which led to a 10–20 times speed-up for the

CPU-serial code. The changes included optimizing for memory management by tracking down and reducing unnecessary

allocations that contributed significantly to the run time, as well as making all types and subtypes concrete rather than abstract,

to minimize on-the-fly compilation. These improvements are explained in more detail in section 4.

We found the CUDA GPU implementation to be significantly faster than the single-core implementation. Because the280

memory transfer between the CPU and GPU takes many orders of magnitude longer than the actual on-GPU computations,

we split them out in Table 1 and Figure 2. The memory transfers require between 0.015s and 0.68s and scale with the array

9

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

101 102

Number of cells in zonal direction

10 7

10 6

10 5

L2 e
rro

r n
or

m
 o

f c
ur

l o
pe

ra
to

r

Convergence of Curl Operator
Interpolated to Cell Centers

L2 error norm
Best fit line, slope=-2.01

101 102

Number of cells in zonal direction

10 12

10 11

L2 e
rro

r n
or

m
 o

f d
iv

er
ge

nc
e

op
er

at
or

Convergence of Divergence Operator
at Cell Centers

L2 error norm
Best fit line, slope=-1.95

101 102

Number of cells in zonal direction

10 9

10 8

10 7

L2 e
rro

r n
or

m
 o

f g
ra

di
en

t o
pe

ra
to

r

Convergence of Gradient Operator
Normal to Edge

L2 error norm
Best fit line, slope=-1.98

101 102

Number of cells in zonal direction

10 3

10 2

L2 e
rro

r n
or

m
 o

f t
an

ge
nt

ia
l v

el
oc

ity

Convergence of Tangential Velocity
along Edges

L2 error norm
Best fit line, slope=-1.96

0 2000 4000 6000 8000
Distance in zonal direction (km)

0

2000

4000

6000

8000

Di
st

an
ce

 in
 m

er
id

io
na

l d
ire

ct
io

n
(k

m
)

Inertia Gravity Wave: SSH (m) after
11 Hours 13 Minutes 26 Seconds

1.0

0.5

0.0

0.5

1.0

1026 × 101 2 × 102 3 × 102

Number of cells in zonal direction

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

L2 e
rro

r n
or

m
 o

f S
SH

Convergence of Inertia Gravity Wave
Refinement in Space and Time

L2 error norm
Best fit line, slope=-0.95

Figure 1. The first two rows show convergence plots of the TRiSK-based spatial operators for the newly-developed Julia code. Tests were

run with both CPU and GPU implementations, and identical results were obtained. The slope of −2 indicates the expected second-order

convergence. The third row shows a snapshot of the inertia-gravity wave test case, and the convergence plot of the numerical solution with

refinement in both space and time.

10

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

size, while the GPU computations alone are 100 times faster, at 0.00027s for the 512x512 resolution case, and do not scale

with resolution. This shows the power of GPUs, where computations alone can run over 40,000 times faster on the GPU

than the CPU, but this speed-up is substantially diminished by the memory transfer time. Still, codes that are designed with285

a small memory footprint and limited memory transfer can greatly benefit from GPU computations. Strategically reducing

array precision to 4-byte or even 2-byte reals for certain variables allows higher-resolution domains to fit on GPUs (Ye et al.,

2022; Klöwer et al., 2022). In addition, single-precision floating point numbers (CUDA Float32 data type) calculations may

execute significantly faster than Float64 (Julia Development Team, a). We did not leverage Float32 in this work, but it

shows that GPU simulations could run even faster than the results shown here.290

Summing the GPU memory transfer and compute for the 10 timestep performance test, the GPUs were 229 to 386 times

faster than the single CPU (Table 2). This compares to published studies of ocean models that show a speed-up from CPU

to GPU ranging from 5–50 (Bleichrodt et al., 2012; Zhao et al., 2017; Xu et al., 2014), and a speed-up of up to 1556x for a

GPU/CUDA Based Parallel Weather and Research Forecast Model (WRF) (Mielikainen et al., 2012). Note that our speed-up

factor could be increased substantially by transferring data from the GPU to CPU less frequently. For a low-resolution ocean295

model with 30-minute time steps, the speed-ups in Table 2 correspond to collecting data every 10 time-steps, which is 5 hours

of model time. One could instead collect data for analysis every 100 time-steps (∼2 days), and that would result in a GPU

speed-up of 2290 to 3860, because the compute time is negligible compared to the memory transfer. On the other hand, if

model communication is required frequently for surface data forcing or coupling with atmospheric and sea ice components, the

speed-up is drastically reduced. For example, if memory must be transferred between the CPU and GPU every time step, the300

speed-ups range from 23—39. The point is that GPU performance is wholly dependant on the GPU communication frequency.

128x128 256x256 512x512

Python, CPU 3.08E+03 1.31E+04 4.96E+04

Julia, CPU-serial (unoptimized) 2.25E+02 8.64E+02 3.86E+03

Julia, CPU-serial (optimized) 1.12E+01 7.43E+01 3.33E+02

Julia, GPU, total 4.90E−02 2.03E−01 8.64E−01

transfer to GPU 2.98E−02 1.16E−01 4.58E−01

compute on GPU 2.51E−04 2.67E−04 2.67E−04

transfer back to CPU 1.53E−02 9.54E−02 6.84E−01

Table 1. Wall clock duration (seconds) of performing ten timesteps with 100 layers on an Intel Cascade Lake CPU or an NVidia Turing GPU.

GPU threads are grouped into threadblocks (or just “blocks”) for efficiency. While calling the kernel function, we must

specify the number of blocks and number of threads per block (the “block size”), as shown in listing 2. Within the kernel, we

obtain the index of the block and thread, multiply the block index by the block size, and add the thread index to compute a

global index. There is a maximum possible block size, but we can choose any smaller value to execute the kernel with. The305

11

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

104 105

Number of horizontal cells

10 3

10 1

101

103

105

W
al

l c
lo

ck
 ti

m
e

(s
)

Python, CPU: s=1.00
Julia, CPU-serial unoptimized: s=1.02
Julia, CPU-serial optimized: s=1.23
Julia, CPU to GPU transfer: s=0.99
Julia, GPU to CPU transfer: s=1.37
Julia, compute on GPU: s=0.02

Figure 2. Timing data from Table 1, comparing ten timesteps of the Kelvin Wave test case on an Intel Cascade Lake CPU or an NVidia

Turing GPU. The log-log slope, shown as s in the legend, is 1.0 for perfect scaling.

0 200 400 600 800 1000
Number of threads per block

0

10

20

30

40

50

W
al

l c
lo

ck
 c

om
pu

ta
tio

n
tim

e
(m

s) Simulation Speed and Occupancy

Figure 3. The same kernel was executed with the same data but different block sizes and the average execution time over 1000 runs was

recorded. Fewer threads per block results in faster execution times on the GPUs.

12

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

128x128 256x256 512x512

Python, CPU 274 177 149

Julia, CPU-serial (unoptimized) 20 12 12

Julia, CPU-serial (optimized) 1 1 1

Julia, GPU 229 366 386

Table 2. Speed-up (bold) or slow-down (non-bold) factor compared to the optimized CPU-serial Julia version at the same resolution. GPU

speed-ups are based on transferring arrays between GPU and CPU every ten time steps.

block size does have an effect on how quickly the kernel runs, so we benchmarked the evaluation time of the same kernel run

with different block sizes, as shown in Figure 3. Smaller block sizes run faster on the GPUs by 15%. This is interesting to note,

but GPU compute time is so small compared to the memory transfer time that thread tuning has little impact on the overall

simulation time.

3.3 Julia-MPI versus Fortran-MPI310

Julia and Fortran codes were compared on multi-node CPU clusters, where both used MPI for communication between

processors. Comparisons were made with domains of 128, 256, and 512-squared grid cells solving the shallow water equations.

All timing tests were conducted for 10 time steps and repeated 12 times on each processor count, spanning 2 to 2048

processors by powers of two. The vertical dimension included 100 layers to mimic ocean model arrays and provide sufficient

computational work on each processor. Separate timers report on computational work versus MPI communication within the315

time-stepping routine. The i/o, initialization, and finalization time is excluded.

Simulations were conducted on Cori-Haswell at the National Energy Research Scientific Computing Center (NERSC).

Cori-Haswell consists of 2,388 nodes in 14 cabinets, using Intel Xeon Processor E5-2698 v3 with a clock rate of 2.3 GHz.

Each processor has 32 physical threads per node and two hyper-threads per core, with 128 GB of memory per node. The

interconnect is a Cray Aries with Dragonfly topology and > 45 TB/s global peak bisection bandwidth. The Julia-MPI and320

Fortran-MPI tests were both run with up to 32 ranks per node.

The scaling plots in Figure 4 show that the Julia-MPI and Fortran-MPI models have identical performance at two cores;

Julia-MPI is faster by up to a factor of two for mid-range core counts; and Fortran-MPI is 2x faster than Julia-MPI at higher

ranges, depending on the resolution. For both languages, computation scales well with processor count, while communication

does not, and communication progressively requires a much larger fraction of time at higher processor counts (Figure 5). Once325

computations are optimized, communication, which is fixed by the interconnect speed, will remain a bottleneck regardless of

the language (see, e.g. Koldunov et al. (2019)). At the lowest resolution of 128x128, there is insufficient work beginning at

512 processors (which corresponds to 32 grid-cells per processor), and timing is dominated by communication, resulting in

poor scaling above 512 processors. Communication times in Julia are much more variable than in Fortran across samples and

13

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

processor counts, as shown in the right column of Figure 4. When measuring computation time without communication (Figure330

4, right column), Julia-MPI scales nearly perfectly, while Fortran-MPI computational time drops off from perfect scaling at 8

and 16 cores. This produces the Julia times that are 2x faster for the total times for mid-range processor counts of 16 and higher.

Overall, Julia performance on CPU clusters is competitive with Fortran. Once the high-level codes have been optimized, the

“winner” between Julia and Fortran will likely depend on the details of the MPI libraries and hardware.

4 Optimization Tips for Julia Developers335

Julia serves the dual purpose of a prototyping language as well as a production language. Not only can we construct quick-to-write

but slow-performing code (although still significantly faster than other development languages, as we saw with comparison

to python) to demonstrate an idea, we can also spend a bit more time to carefully construct an optimized code to achieve

performance on par with Fortran. Julia’s ability to act as a prototyping language can be attributed to one of its key features:

dynamic typing. Just like Python, variables may be initialized without defining their types. However, Julia is also endowed with340

a static typing feature, even though it is optional. If the variable types are statically defined in a concrete fashion, performance

is greatly improved. Julia activates its dynamic typing feature with an “Any” type which could be any type at run time. So,

Julia must compile parts of the code on the fly (Julia Development Team, b). A method involving an “Any” type is compiled

at run time for whatever type is actually provided during execution (called just-in-time compiling). The implication is that

without static typing, performance will greatly suffer from compilation at run time. Additionally, with concrete types, the Julia345

compiler may optimize the code much further than if it is compiled for an unknown type.

When first creating the MPAS shallow water core in Julia, we did not specify the array types, and let Julia assign them the

“Any” type:

struct MPAS_Ocean

layerThickness350

normalVelocity

...

end

However, by concretely defining these variables to be floating point arrays, we gain a substantial performance boost:

struct MPAS_Ocean355

layerThickness::Array{Float64}

normalVelocity::Array{Float64}

end

When parallelizing for the graphics card, a different array type is used that is suited for GPUs. We tried defining an abstract

array type that encompasses both the CPU and GPU data types, so that CUDA.CuArrays and regular Arrays could be used360

14

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.01

0.10

1.00

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

128x128 Hexagonal Mesh

Julia
Fortran
Perfect scaling

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.01

0.10

1.00

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

128x128 Hexagonal Mesh

Perfect scaling
Julia communication
Fortran communication
Julia computation
Fortran computation

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

256x256 Hexagonal Mesh

Julia
Fortran
Perfect scaling

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)
256x256 Hexagonal Mesh

Perfect scaling
Julia communication
Fortran communication
Julia computation
Fortran computation

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

512x512 Hexagonal Mesh

Julia
Fortran
Perfect scaling

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

512x512 Hexagonal Mesh

Perfect scaling
Julia communication
Fortran communication
Julia computation
Fortran computation

Figure 4. Wall clock time versus the number of processors to simulate 10 steps of the coastal Kelvin wave test with 100 layers. Left column

shows total time without i/o; right column splits MPI communication and computation. Vertical lines display the standard deviation of

communication times.

15

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.5

1.0

Pr
op

or
tio

n
of

 ti
m

e

Julia: Proportion of Simulation Time
Spent on Computation and Communication

Computation
Communication

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.5

1.0

Pr
op

or
tio

n
of

 ti
m

e

Fortran: Proportion of Simulation Time
Spent on Computation and Communication

Computation
Communication

Figure 5. Comparison of the proportion of time spent in computation (blue) versus communication (red) in Julia-MPI (top) and Fortran-MPI

(bottom) on the 128x128 hexagonal mesh. The relative time spent in communication increases dramatically at high processor counts.

interchangeably, allowing the model to be run on the GPU or CPU at will. We also used an abstract type specification on the

contents of these arrays F <: Float, meaning any type extending the abstract floating point type can be used at runtime.

struct MPAS_Ocean{F <: AbstractFloat}

layerThickness::AbstractArray{F}

normalVelocity::AbstractArray{F}365

end

This approach seems like it should be performant, since the types are defined before run time. However, abstract types,

like an Any type, slow down execution since at run time they may actually be a different type that extends the abstract type

(CUDA.CuArray or Array), meaning the compiler is doing just-in-time compiling. Similarly, specifying an inexact element

type (F <: AbstractFloat) rather than a concrete type (Float64) is very inefficient.370

Instead, two separate structures should be defined concretely when running on GPUs versus CPUs:

struct MPAS_Ocean_CUDA

layerThickness::CUDA.CuArray{Float64,2}

normalVelocity::CUDA.CuArray{Float64,2}

end375

16

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

struct MPAS_Ocean

layerThickness::Array{Float64,2}

normalVelocity::Array{Float64,2}

end380

Now the array types are concrete, element types are concrete (Float64), and the number of dimensions is specified

(Float64,2). This code no longer has the advantageous feature of being able to switch between running on the CPU and

GPU on the fly. However, the execution speed is massively improved. We found that making this change from abstract to

concrete array types sped up computation by a factor of 34x.

The key in optimizing Julia code, we found, was reducing allocations. Memory allocation significantly slows down execution.385

And it is not always obvious what seemingly innocent actions may allocate memory. For example, simply reading a pair of

values from an array with two columns:

cell1Index, cell2Index = cellsOnEdge[:,iEdge]

can allocate significant memory. In one test, this one line (executed repeatedly throughout the simulation) allocated 408 KiB.

This is because the line is really creating a tuple, not directly reading each column into the two scalar variables. If we separate390

this into two lines to enforce only using scalars and not allocating tuples or arrays:

cell1Index = cellsOnEdge[1,iEdge]

cell2Index = cellsOnEdge[2,iEdge]

then this cuts allocations to zero—making this line almost instantaneous, and dropping the time spent on the whole tendency

calculation from 198 µs to 99 µs. That means this line alone was responsible for about 50% of the computation time, when it395

could be rewritten to take no time at all.

There are likely many inconspicuous lines like this lurking in one’s Julia code, slowing it down substantially. Additionally,

even one overlooked field which is not concretely typed may significantly slow execution. Luckily, Julia is equipped with a

tool to quickly locate such memory-hoarding lines. This tool is called @code_warntype. Prefixing a function call with it

will print out a color-coded list breaking each line down to individual memory operations:400

@code_warntype calculate_normal_velocity_tendency!(mpas)

It helpfully highlights inexact types and memory allocations with red, pointing a user right to the lines and fields that need

to be optimized. This feature alone makes Julia very powerful for high-performance applications, significantly speeding up

development time to optimize a model’s performance.

Another very helpful tool when optimizing Julia code is --track-allocations, a command line option that can be405

added to any Julia execution as follows:

$ julia --track-allocations=user ./anyJuliascript.jl

17

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

A new file is created at ./anyJuliascript.jl.XXX.mem (where XXX is some unique number). This file contains each

line of the script prefixed by the number of memory allocations created by that line, giving a line-by-line breakdown of where

allocations occur.410

5 Conclusions

As new programming languages and libraries become available, it is important for model developers to learn new techniques

and evaluate them against their current methods. This is particularly true as computing architectures continue to evolve, and

long-standing languages such as C++ and Fortran require additional libraries to remain competitive on new supercomputers.

In this work, we created three implementations of a shallow water model in Julia in order to compare ease of development415

and performance to standard Fortran and Python implementations. The three Julia codes were designed for single-CPU,

GPU-enhanced single CPU, and parallelized multi-core CPU architectures. Julia-MPI speeds were identical to Fortran-MPI

at low core counts, 2x faster for mid-range, and 2x slower at higher core counts. Julia-MPI exhibited better scaling than

Fortran-MPI for computation-only times, and more variability for communication times.

The most surprising result of this study was the speed of computations on the GPUs—a speed-up of 40,000 to over 100,000420

times compared to the CPU. Of course, this comes with the caveat that memory transfer between CPU and GPU can take

thousands of times longer than the computation, up to 0.5s at our highest resolution. So the key is to transfer memory to and

from the GPU as little as possible, which is a well-known practice. If one can fit the full resolution of a computational physics

domain within the memory of a single graphics card and sample results rarely, GPUs offer significant speed-ups. For climate

models, a single low-resolution component may well fit into GPU memory if the developers are careful with their memory425

footprint. The difficulty is that including ocean, atmosphere, land, and sea ice components requires the use of multiple nodes,

and inter-node communication will keep the model slow, regardless of the GPU speed. Higher-resolution domains will need

many nodes for each component and present the same problem.

The shallow water equations are simple enough for rapid development and verification, yet contain the salient features of any

ocean model: intensive computation of the tendency terms, a time-stepping routine, and for the parallel version, interleaved halo430

communication of the partition boundary. Indeed, this layout, and the lessons learned here, apply to almost all computational

physics codes.

This work specifically tests unstructured horizontal meshes, as opposed to structured quadrilateral grids. Unstructured

meshes refer to a neighbor’s index using additional pointer arrays, so require an extra memory access for horizontal stencils.

In structured grids, the physical neighbors are also neighbors in array space (i+ 1, j+ 1, etc), which leads to more contiguous435

memory access patterns that are easier for compilers to optimize. Our results show that unstructured meshes do not present any

significant challenge in either Fortran or Julia. The use of a structured vertical index in the innermost position and testing with

100 layers provides sufficient contiguous memory access for cache locality.

In the end, we were impressed by our experience with Julia. It did fulfill the promise of fast and convenient prototyping, with

the ability to eventually run at high speeds on multiple high performance architectures—after some effort and lessons learned440

18

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

by the developers. The Julia libraries for MPI and CUDA were powerful and convenient. E3SM does not have plans to develop

model components with Julia, but this study provides a useful comparison to our C++ and Fortran codes as we move towards

heterogeneous, exascale computers.

Code and data availability. Three code repositories were used for the performance comparisons in this study. These are publicly available

on both GitHub and Zenodo:445

1. Julia Shallow Water code for serial CPU, CUDA-GPU, and MPI-parallelized CPU

GitHub: https://github.com/robertstrauss/MPAS_Ocean_Julia (license: GNU General Public License v3.0)

Zenodo: https://doi.org/10.5281/zenodo.7493065 (license: Creative Commons Attribution 4.0 International)

2. Python Rotating Shallow Water Verification Suite

GitHub: https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git. (license: LANL/UCAR*)450

This study used the specific code version https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_

Suite/tree/v1.0.1 (license: LANL/UCAR*)

Zenodo: https://doi.org/10.5281/zenodo.7425628 (license: BSD 3-Clause "New" or "Revised")

3. Fortran-MPI MPAS Shallow Water code with Coastal Kelvin wave initial condition (Petersen et al., 2022)

GitHub: https://github.com/MPAS-Dev/MPAS-Model. (license: LANL/UCAR*) This study used the specific code version455

https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0.

Zenodo: https://doi.org/10.5281/zenodo.7439134 (license: Creative Commons Attribution 4.0 International)

The planar hexagonal MPAS-Ocean meshes used in this study for the numerical simulations and convergence tests of the coastal Kelvin

wave and the inertia-gravity wave can be obtained from the Zenodo release of the Python Rotating Shallow Water Verification Suite Meshes

at https://doi.org/10.5281/zenodo.7419817.460

* Code bases use the license found at https://github.com/MPAS-Dev/MPAS-Model/blob/master/LICENSE.

Author contributions. Code development, testing, and timing were conducted by RRS for Julia, SB for python, and MRP for Fortran. RRS led

data analysis, plot generation, and Julia optimization. SB led the test case design and verification. The manuscript was written cooperatively

by all authors. MRP conceptualized the project and conducted funding acquisition.

Competing interests. The authors declare no competing interests465

Acknowledgements. RRS gratefully acknowledges the support of the U.S. Department of Energy (DOE) through the Los Alamos National

Laboratory (LANL) LDRD Program and the Center for Nonlinear Studies for this work. SB was supported by Scientific Discovery through

19

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

Advanced Computing (SciDAC) projects LEAP (Launching an Exascale ACME Prototype) and CANGA (Coupling Approaches for Next

Generation Architectures) under the DOE Office of Science, Office of Biological and Environmental Research (BER). MRP was supported

by the Energy Exascale Earth System Model (E3SM) project, also funded by the DOE BER.470

This research used computational resources provided by: the Darwin testbed at LANL, which is funded by the Computational Systems

and Software Environments subprogram of LANL’s Advanced Simulation and Computing program (NNSA/DOE); the LANL Institutional

Computing Program, which is supported by the DOE National Nuclear Security Administration under Contract No. 89233218CNA000001;

and the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science

of the DOE under Contract No. DE-AC02-05CH11231.475

20

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

References

Bishnu, S.: Time-Stepping Methods for Partial Differential Equations and Ocean Models, Ph.D. thesis, Florida State University,

https://doi.org/10.5281/zenodo.7439539, 2021.

Bishnu, S.: Rotating Shallow Water Verification Suite, https://doi.org/10.5281/zenodo.7425628, 2022.

Bishnu, S., Petersen, M., Quaife, B., and Schoonover, J.: Verification Suite of Test Cases for the Barotropic Solver of Ocean Models,480

https://doi.org/10.22541/essoar.167100170.03833124/v1, 2022.

Bleichrodt, F., Bisseling, R. H., and Dijkstra, H. A.: Accelerating a barotropic ocean model using a GPU, OCEAN MODEL, 41, 16–21,

https://doi.org/10.1016/j.ocemod.2011.10.001, 2012.

Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J. C., et al.: The DOE E3SM Coupled Model Version 1: Description

and Results at High Resolution, J ADV MODEL EARTH SY, 11, 4095–4146, https://doi.org/10.1029/2019MS001870, 2019.485

Cushman-Roisin, B. and Beckers, J.-M.: Introduction to geophysical fluid dynamics: physical and numerical aspects, Academic press, 2011.

Dalcín, L., Paz, R., and Storti, M.: MPI for Python, J PARALLEL DISTR COM, 65, 1108–1115, 2005.

Dalcín, L., Paz, R., Storti, M., and D’Elía, J.: MPI for Python: Performance improvements and MPI-2 extensions, J PARALLEL DISTR

COM, 68, 655–662, 2008.

Gevorkyan, M. N., Demidova, A. V., Korolkova, A. V., and Kulyabov, D. S.: Statistically significant performance testing of Julia scientific490

programming language, J PHYS CONF SER, 1205, 012 017, https://doi.org/10.1088/1742-6596/1205/1/012017, 2019.

Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., et al.: The DOE E3SM Coupled Model Version 1: Overview and Evaluation

at Standard Resolution, J ADV MODEL EARTH SY, 11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019.

Jiang, J., Lin, P., Wang, J., Liu, H., Chi, X., Hao, H., Wang, Y., Wang, W., and Zhang, L.: Porting LASG/ IAP Climate System Ocean Model

to Gpus Using OpenAcc, IEEE ACCESS, 7, 154 490–154 501, https://doi.org/10.1109/ACCESS.2019.2932443, 2019.495

Julia Development Team: Introduction to CUDA, https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU,

2022, visited on 2022-12-13, a.

Julia Development Team: Eval of Julia code, https://docs.julialang.org/en/v1/devdocs/eval/#, 2016, visited on 2022-12-13, b.

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih, A.: PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU

Run-Time Code Generation, PARALLEL COMPUT, 38, 157–174, https://doi.org/10.1016/j.parco.2011.09.001, 2012.500

Klöwer, M., Hatfield, S., Croci, M., Düben, P. D., and Palmer, T. N.: Fluid Simulations Accelerated With 16 Bits: Approaching 4x Speedup

on A64FX by Squeezing ShallowWaters.jl Into Float16, J ADV MODEL EARTH SY, 14, https://doi.org/10.1029/2021MS002684, 2022.

Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko, D., Danilov, S., and Jung, T.: Scalability and some

optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2), GEOSCI MODEL DEV, 12, 3991–4012,

https://doi.org/10.5194/gmd-12-3991-2019, 2019.505

Lam, S. K., Pitrou, A., and Seibert, S.: Numba: A llvm-based python jit compiler, in: Proceedings of the Second Workshop on the LLVM

Compiler Infrastructure in HPC, pp. 1–6, 2015.

Lin, W.-C. and McIntosh-Smith, S.: Comparing Julia to Performance Portable Parallel Programming Models for HPC, in: 2021 International

Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), pp. 94–105, IEEE,

St. Louis, MO, USA, https://doi.org/10.1109/PMBS54543.2021.00016, 2021.510

21

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

Mielikainen, J., Huang, B., Huang, H.-L. A., and Goldberg, M. D.: Improved GPU/CUDA Based Parallel Weather and

Research Forecast (WRF) Single Moment 5-Class (WSM5) Cloud Microphysics, IEEE J SEL TOP APPL, 5, 1256–1265,

https://doi.org/10.1109/JSTARS.2012.2188780, 2012.

Perkel, J. M.: Julia: come for the syntax, stay for the speed, NATURE, 572, 141–142, https://doi.org/10.1038/d41586-019-02310-3, 2019.

Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht, M. W., and Maltrud, M. E.: Evaluation of the Arbitrary Lagrangian–Eulerian Vertical515

Coordinate Method in the MPAS-Ocean Model, OCEAN MODEL, 86, 93–113, https://doi.org/10.1016/j.ocemod.2014.12.004, 2015.

Petersen, M. R., Asay-Davis, X. S., Berres, A. S., Chen, Q., Feige, N., Hoffman, M. J., Jacobsen, D. W., Jones, P. W., Maltrud, M. E., Price,

S. F., Ringler, T. D., Streletz, G. J., Turner, A. K., Van Roekel, L. P., Veneziani, M., Wolfe, J. D., Wolfram, P. J., and Woodring, J. L.: An

Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE-II Forcing, J ADV MODEL EARTH SY, 11,

1438–1458, https://doi.org/10.1029/2018MS001373, 2019.520

Petersen, M. R., Bishnu, S., and Strauss, R. R.: MPAS-Ocean Shallow Water Performance Test Case,

https://doi.org/10.5281/zenodo.7439134, 2022.

Ramadhan, A., Wagner, G. L., Hill, C., Campin, J.-M., Churavy, V., Besard, T., Souza, A., Edelman, A., Ferrari, R., and

Marshall, J.: Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs, J. OPEN SOURCE SOFTW., 5, 2018,

https://doi.org/10.21105/joss.02018, 2020.525

Ringler, T. D., Thuburn, J., Klemp, J. B., and Skamarock, W. C.: A unified approach to energy conservation and potential vorticity dynamics

for arbitrarily-structured C-grids, J COMPUT PHYS, 229, 3065–3090, 2010.

Ringler, T. D., Petersen, M. R., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud, M.: A multi-resolution approach to global ocean

modeling, OCEAN MODEL, 69, 211–232, 2013.

Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface,530

topography-following-coordinate oceanic model, OCEAN MODEL, 9, 347–404, 2005.

Srinath, A.: Accelerating Python on GPUs with nvc++ and Cython, https://developer.nvidia.com/blog/

accelerating-python-on-gpus-with-nvc-and-cython/, 2020, visited on 2022-12-13.

Strauss, R. R.: Julia Layered Shallow Water Model on Various Hardwares, https://doi.org/10.5281/zenodo.7493065, 2023.

Thuburn, J., Ringler, T. D., Skamarock, W. C., and Klemp, J. B.: Numerical representation of geostrophic modes on arbitrarily structured535

C-grids, J COMPUT PHYS, 228, 8321–8335, 2009.

Trott, C. R., Lebrun-Grandié, D., et al.: Kokkos 3: Programming Model Extensions for the Exascale Era, IEEE T PARALL DISTR, 33,

805–817, https://doi.org/10.1109/TPDS.2021.3097283, 2022.

Xu, S., Huang, X., Zhang, Y., Hu, Y., and Yang, G.: A customized GPU acceleration of the princeton ocean model,

in: 2014 IEEE 25th International Conference on Application-Specific Systems, Architectures and Processors, pp. 192–193,540

https://doi.org/10.1109/ASAP.2014.6868661, 2014.

Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., and Yang, G.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model, GEOSCI

MODEL DEV, 8, 2815–2827, https://doi.org/10.5194/gmd-8-2815-2015, 2015.

Ye, Y., Song, Z., Zhou, S., Liu, Y., Shu, Q., Wang, B., Liu, W., Qiao, F., and Wang, L.: swNEMO_v4.0: an ocean model based on NEMO4 for

the new-generation Sunway supercomputer, GEOSCI MODEL DEV, 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022, 2022.545

Zhao, X.-d., Liang, S.-x., Sun, Z.-c., Zhao, X.-z., Sun, J.-w., and Liu, Z.-b.: A GPU accelerated finite volume coastal ocean model, J

HYDRODYN, Ser. B, 29, 679–690, https://doi.org/10.1016/S1001-6058(16)60780-1, 2017.

22

https://doi.org/10.5194/egusphere-2023-57
Preprint. Discussion started: 15 February 2023
c© Author(s) 2023. CC BY 4.0 License.

